Выписка из основной образовательной программы среднего общего образования Государственного бюджетного общеобразовательного учреждения средней общеобразовательной школы № 291 Красносельского района Санкт-Петербурга, утвержденной приказом от 30.08.2023 № 595-од (внесены дополнения приказом от 06.12.2023 № 1032-од)

Рабочая программа по учебному предмету «Физика» (базовый уровень) ПРИВЕДЕНА В СООТВЕТСТВИЕ С ФОП СОО

Пояснительная записка

Рабочая программа по физике базового уровня на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Рабочая программа ориентирована на использование УМК Г.Я. Мякишева линии «Просвещение» и обеспечена: учебником Мякишева Г.Я., Буховцева Б.Б., Сотского Н.Н. Учебник для общеобразовательных учреждений. «Физика». 10 класс. — М.:Просвещение, 2019 и 2022 гг. учебником Мякишева Г.Я., Буховцев Б.Б. Чаругин В.М. Учебник для общеобразовательных учреждений. «Физика». 11 класс. — М.: Просвещение, 2022 г.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, физической географией и астрономией. Использование и активное применение физических знаний определяет характер и развитие разнообразных технологий в сфере энергетики, транспорта, освоения космоса, получения новых материалов с заданными свойствами и др. Изучение физики вносит основной вклад в формирование естественнонаучной картины мира учащихся, в формирование умений применять научный метод познания при выполнении ими учебных исследований. В основу курса физики средней школы положен ряд идей, которые можно рассматривать как принципы его построения. Идея целостности. В соответствии с ней курс является логически завершённым, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики. Идея генерализации. В соответствии с ней материал курса физики объединён вокруг физических теорий. Ведущим в курсе является формирование представлений о структурных уровнях материи, веществе и поле. Идея гуманитаризации. Её реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, а также с мировоззренческими, нравственными и экологическими проблемами. 6 Примерная рабочая программа Идея прикладной направленности. Курс физики предполагает знакомство с широким кругом технических и технологических приложений изученных теорий и законов. Идея экологизации реализуется посредством введения элементов содержания, посвящённых экологическим проблемам современности, которые связаны с развитием техники и технологий, а также обсуждения проблем рационального природопользования и экологической безопасности. Стержневыми элементами курса физики средней школы являются физические теории (формирование представлений о структуре построения физической теории, роли фундаментальных законов и

принципов в современных представлениях о природе, границах применимости теорий, для описания естественно-научных явлений и процессов).

Системно-деятельностный подход в курсе физики реализуется прежде всего за счёт организации экспериментальной деятельности обучающихся. Для базового уровня курса физики — это использование системы фронтальных кратковременных экспериментов и лабораторных работ, которые в программе объединены в общий список ученических практических работ. Выделение в указанном перечне лабораторных работ, проводимых для контроля и оценки, осуществляется участниками образовательного процесса исходя из особенностей тематического планирования и оснащения кабинета физики. При этом обеспечивается овладение обучающимися умениями проводить косвенные измерения, исследования зависимостей физических величин и постановку опытов по проверке предложенных гипотез. Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной физической моделью, позволяющие применять изученные законы и закономерности как из одного раздела курса, так и интегрируя знания из разных разделов.

Для качественных задач приоритетом являются задания на объяснение протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практико-ориентированного характера. В соответствии с требованиями ФГОС СОО к материальнотехническому обеспечению учебного процесса базовый уровень курса физики в средней школе должен изучаться в условиях предметного кабинета физики или в условиях интегрированного кабинета предметов естественно-научного цикла.

В кабинете физики должно быть необходимое лабораторное оборудование ФИЗИКА. 10—11 классы для выполнения указанных в программе ученических практических работ и демонстрационное оборудование. Демонстрационное оборудование формируется в соответствии с принципом минимальной достаточности и обеспечивает постановку перечисленных в программе ключевых демонстраций для исследования изучаемых явлений и процессов, эмпирических и фундаментальных законов, их технических применений. Лабораторное оборудование для ученических практических работ формируется в виде тематических комплектов и обеспечивается в расчёте одного комплекта на двух обучающихся. Тематические комплекты лабораторного оборудования должны быть построены на комплексном использовании аналоговых и цифровых приборов, а также компьютерных измерительных систем в виде цифровых лабораторий.

Основными целями изучения физики в общем образовании являются:

- формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

- приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;

- освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;
- понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;
- овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- создание условий для развития умений проектно-исследовательской, творческой деятельности.

Стратегия инновационного развития Российской Федерации на период до 2030 года в перечне основных направлений реализации определяет значительное повышение качества и престижа инженерного образования, в том числе посредством выстраивания системы поиска и обеспечения раскрытия способностей талантливых детей к творчеству по естественнонаучным и техническим направлениям, чему в полной мере способствует внедрение в образовательный процесс модели «Инженерный класс» как одной из важнейших структурных единиц организации обучающихся в образовательном учреждении для овладения ими инженерными компетенциями.

В ГБОУ СОШ № 291 Санкт-Петербурга реализуется модель «Инженерный класс». В рамках реализации данной модели в образовательном процессе образовательного учреждения используется учебное и учебно-лабораторное оборудование, приобретенное на средства грантов в форме субсидий, выделенных образовательным организациям Санкт-Петербурга в соответствии с постановлениями Правительства Санкт-Петербурга № 438 и № 439 от 29.06.2021 года:

- 1. Образовательный комплекс "Робототехника" (робот «Omegabot BOT-V2-21-00368» х 6 шт.; ноутбук «Asus UX535L» х 6 шт.; Стол технический с бортами) 1 шт.
- 2. Лазерно-технологический стенд №1 "Лазерная металлообработка" (лазер по металлу «ЦЛТ FMark-20»; вытяжка «СовПлим LF-300»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 3. Лазерно-технологический стенд №2 "Лазерная обработка неметаллический конструкционных материалов" (лазер для обработки неметаллических конструкционных материалов «Makeblocklaserbox MLP-k503-40W»; вытяжка «СовПлим LF-300»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 4. Технологический стенд "Трехмерное моделирование и макетирование" (3D-принтер, «Designer X Pro»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 5. Интерактивная панель Newline TT-6519RS.
- 6. МФУ Kyocera ECOSYS M6630cidn.
- 7. Системный блок на базе IntelCore i5 10400; комплект (клавиатура + мышь), монитор 27'.
- 8. Poyrep KeeneticGiant KN-2610.

В соответствии с постановлением Правительства Санкт-Петербурга № 455 от 27.05.2022 в образовательном процессе используется учебное и учебно-лабораторное оборудование, приобретенное на средства грантов в форме субсидий, выделенных образовательным организациям Санкт-Петербурга:

- комплекс «Компьютерное моделирование, проектирование, коллективная работа с инженерными данными в среде виртуальной реальности»,
- комплекс «Морская робототехника и судомоделизм»,
- комплекс «Оптика. Работа с лазерной оптикой и 3D изображением»,
- интерактивные доски, мебель для инженерных классов.

Место учебного предмета «Физика» в учебном плане

В учебном плане на изучение физики в 10 и 11 классах отводится по 68 часов в год, по 2 часа в неделю.

Реализация воспитательного потенциала программы

Настоящая рабочая программа формируется с учетом рабочей программы воспитания ГБОУ СОШ № 291 Санкт-Петербурга. Воспитательная составляющая (компонента) данной программы направлена на развитие личности, создание условий для самоопределения и социализации на основе традиционных российских ценностей (жизни, достоинства, прав и свобод человека, патриотизма, гражданственности, служение Отечеству и ответственности за его судьбу, высоких нравственных идеалов, крепкой семьи, созидательного труда, приоритета духовного над материальным, гуманизма, милосердия, справедливости, коллективизма, взаимопомощи и взаимоуважения, исторической памяти и преемственности поколений, единства народов России), а также принятых в российском обществе правил и норм поведения в интересах человека, семьи, общества и государства.

Программа максимально использует воспитательные возможности содержания предмета (курса) посредством подбора соответствующего содержания уроков, заданий, вспомогательных материалов, проблемных ситуаций для формирования у обучающихся российских традиционных духовно-нравственных и социокультурных ценностей, российского исторического сознания на основе исторического просвещения.

Выбор методов, методик, технологий осуществляется с учетом воспитательного воздействия на личность в соответствии с целями и задачами воспитания и образования. На уроках предусмотрено:

- привлечение внимания обучающихся к ценностному аспекту изучаемого предмета, явлений и событий, инициирование обсуждений, высказываний своего мнения, выработки своего личностного отношения к изучаемым событиям, явлениям, лицам;
- применение интерактивных форм работы интеллектуальных, стимулирующих познавательную мотивацию, игровых методик, дискуссий, дающих возможность приобрести опыт ведения конструктивного диалога; групповой работы, которая учит строить отношения и действовать в команде, способствует развитию критического мышления;
- побуждение обучающихся соблюдать нормы поведения, правила общения со сверстниками и педагогическими работниками, установление и поддержка доброжелательной атмосферы;
- организация наставничества мотивированных и эрудированных обучающихся над неуспевающими одноклассниками, в том числе с особыми образовательными потребностями, дающего обучающимся социально-значимый опыт сотрудничества и взаимной помощи;
- инициирование и поддержка исследовательской деятельности обучающихся, планирование и выполнение индивидуальных и групповых проектов воспитательной направленности.

В рамках реализации программы учитываются мероприятия, включенные в план воспитательной работы школы.

<u>Рабочая программа обновлена в соответствии с федеральной рабочей программой в части предметных результатов.</u>

Планируемые результаты освоения учебного предмета

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Гражданское воспитание:

- сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;
- принятие традиционных общечеловеческих гуманистических и демократических ценностей;
- готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в школе и детско-юношеских организациях;
- умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;
- готовность к гуманитарной и волонтёрской деятельности.

Патриотическое воспитание:

— сформированность российской гражданской идентичности, патриотизма;

- ценностное отношение к государственным символам; достижениям российских учёных в области физики и технике. Духовно-нравственное воспитание:
- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;
- осознание личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

— эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке.

Трудовое воспитание:

- интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни.

Экологическое воспитание:

- сформированность экологической культуры, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;
- расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике.

Ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития физической науки;
- осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе. В процессе достижения личностных результатов освоения программы среднего общего образования по физике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:
- самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Универсальные познавательные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых физических явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем. Базовые исследовательские действия:
- владеть научной терминологией, ключевыми понятиями и методами физической науки;
- владеть навыками учебно-исследовательской и проектной деятельности в области физики; способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;
- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;
- давать оценку новым ситуациям, оценивать приобретённый опыт;
- уметь переносить знания по физике в практическую область жизнедеятельности;
- уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- оценивать достоверность информации;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Универсальные коммуникативные действия

Общение:

- осуществлять общение на уроках физики и во внеурочной деятельности;
- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств.

Совместная деятельность:

- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Универсальные регулятивные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;
- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений; давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;
- оценивать приобретённый опыт;
- способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности. Принятие себя и других:
- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибки.

Предметные результаты

К концу обучения предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач:

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, приэтом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

Содержание учебного предмета

Физика в познании вещества, поля, пространства и времени (2 ч)

Что изучает физика. Органы чувств как источник информации об окружающем мире. Физический эксперимент, теория. Физические модели. Идея атомизма. Фундаментальные взаимодействия.

Механика (25ч)

Кинематика материальной точки

Траектория. Закон движения. Перемещение. Путь и перемещение. Средняя скорость. Мгновенная скорость. Относительная скорость движения тел. Равномерное прямолинейное движение. Ускорение. Прямолинейное движение с постоянным ускорением. Равнопеременное прямолинейное движение. Свободное падение тел. Одномерное движение в поле тяжести при наличии начальной скорости. Баллистическое движение. Кинематика периодического движения. Вращательное и колебательное движение материальной точки.

Фронтальные лабораторные работы

1. Измерение ускорения свободного падения.

Динамика материальной точки

Принцип относительности Галилея. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Гравитационная сила. Закон всемирного тяготения. Сила тяжести. Сила упругости. Вес тела. Сила трения. Применение законов Ньютона.

Фронтальная лабораторная работа

2. Измерение коэффициента трения скольжения.

Законы сохранения

Импульс материальной точки. Закон сохранения импульса. Работа силы. Потенциальная энергия. Потенциальная энергия тела при гравитационном и упругом взаимодействиях. Кинетическая энергия. Мощность. Закон сохранения механической энергии. Абсолютно неупругое и абсолютно упругое столкновение.

Статика в программе нет вообще такого раздела

Условие равновесия для поступательного движения. Условие равновесия для вращательного движения. Плечо и момент силы. Центр тяжести (центр масс системы материальных точек).

Молекулярная физика (22 ч.)

Основы МКТ

Возникновение атомистической гипотезы строения вещества и её экспериментальные доказательства. Строение атома. Масса атомов. Молярная масса. Количество вещества.

Агрегатные состояния вещества.

Абсолютная температура, как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа.

Распределение молекул идеального газа в пространстве. Распределение молекул идеального газа по скоростям. Температура. Шкалы температур. Основное уравнение молекулярно-кинетической теории. Уравнение Клапейрона — Менделеева. Изотермический процесс. Изобарный процесс. Изохорный процесс.

Фронтальная лабораторная работа

3. Изучение изотермического процесса в газе.

Основы термодинамики

Внутренняя энергия. Работа газа при расширении и сжатии. Работа газа при изопроцессах. Первый закон термодинамики. Применение первого закона термодинамики для изопроцессов. Адиабатный процесс. Тепловые двигатели. Второй закон термодинамики. Порядок и хаос. Необратимость тепловых процессов. Охрана окружающей среды

Взаимные превращения жидкостей и газов. Твердоые тела.

Фазовый переход пар — жидкость. Испарение. Конденсация. Насыщенный пар. Влажность воздуха. Кипение жидкости. Кристаллизация и плавление твердых тел. Структура твердых тел. Кристаллическая решетка. Механические свойства твердых тел.

Фронтальная лабораторная работа

4. Измерение удельной теплоемкости вещества.

Электромагнетизм (28h, в 10 классе 15h)

Электростатика

Электрический заряд. Квантование заряда. Электризация тел. Закон сохранения заряда. Закон Кулона. Равновесие статических зарядов. Напряженность электрического поля. Линии напряженности электростатического поля. Принцип суперпозиции электрических полей. Электростатическое поле заряженной сферы и заряженной плоскости.

Работа сил электростатического поля. Потенциал электростатического поля. Разность потенциалов. Измерение разности потенциалов. Электрическое поле в веществе. Диэлектрики в электростатическом поле. Проводники в электростатическом поле. Электроемкость уединенного проводника и конденсатора. Соединение конденсаторов. Энергия электростатического поля. Объемная плотность энергии электростатического поля.

Фронтальная лабораторная работа

5. Измерение электроемкости конденсатора.

Законы постоянного тока

Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление. Электрические цепи. Работа и мощность постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.

Электрический ток в различных средах

Электронная проводимость металлов. Сверхпроводимость. Электрический ток в полупроводниках. Электрический ток в вакууме. Ток в жидкостях. Закон электролиза. Электрический ток в газах.

11 класс

Электромагнетизм(28h, в 11 классе 13h)

«Магнитное поле» (6 ч.).

Магнитные взаимодействия. Магнитное поле токов. Индукция магнитного поля. Линии

магнитной индукции. Действие магнитного поля на проводник с током. Закон Ампера. Движение заряженных частиц в магнитном поле. Сила Лоренца. Магнитные свойства вещества.

«Электромагнитная индукция» (4 ч.).

Опыты Фарадея. Магнитный поток. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. [ЭДС индукции в движущемся проводнике.] Самоиндукция. Индуктивность. Энергия магнитного поля тока.

«Колебания и волны» (34 ч.)

«Механические и электромагнитные колебания» (13ч.)

Условия возникновения механических колебаний. Две модели колебательных систем. Кинематика колебательного движения. Гармонические колебания. Динамика колебательного движения. Превращение энергии при гармонических колебаниях. Затухающие колебания. Вынужденные колебания. Резонанс. Свободные электромагнитные колебания. Колебательный контур. Формула Томсона. Процессы при гармонических колебаниях в колебательном контуре. Вынужденные электромагнитные колебания. Переменный ток. Действующие значения силы токаи напряжения. Резистор в цепи переменного тока. [Конденсатор и катушка индуктивности в цепи переменного тока. Закон Ома для цепи переменного тока. Резонанс в электрических цепях. Мощность в цепи переменного тока. Трансформатор. [Производство, передача и использование электрической энергии.]

Механические волны. Волны в среде. Звук

«Волны» (5 ч.).

Механические волны. Волны в среде. Звук

Электромагнитные волны. Принципы радиосвязи и телевидения.

«Законы геометрической оптики» (5 ч.).

Закон прямолинейного распространения света. Закон отражения света. Закон преломления света. [Явление полного внутреннего отражения.] Линзы. Формула тонкой линзы. Построение изображений в тонких линзах. Глаз как оптическая система. [Оптические приборы]

«Волновая оптика» (7 ч.). Измерение скорости света. Дисперсия света. Принцип Гюйгенса. Интерференция волн. Интерференция света. Дифракция света. [Дифракционная решетка.Поляризация световых волн.]

Лабораторная работа № 7 «Исследование явлений интерференции и дифракции света»

Лабораторная работа №8 « Определение скорости света в веществе»

«Элементы теории относительности» (2 ч.).

Законы электродинамики и принцип относительности. Опыт Майкельсона. Постулаты специальной теории относительности. Масса, импульс и энергия в специальной теории относительности.

«Виды излучений»

«Квантовая физика. Астрофизика» (15 ч.)

«Квантовая физика. Строение атома» (5 ч.) Равновесное тепловое излучение. Гипотеза Планка. Законы фотоэффекта. Давление света. Корпускулярно-волновой дуализм. Гипотеза де Бройля. Планетарная модель атома. Опыты Резерфорда. Постулаты Бора. Модель атома водорода по Бору. [Лазеры.]

Лабораторная работа № 9 « Наблюдение сплошных и линейчатых спектров»

«Физика атомного ядра. Элементарные частицы» (10 ч.) Методы регистрации заряженных частиц. Естественная радиоактивность. Альфа-, бета- и гамма-излучения. Радиоактивные превращения. Закон радиоактивного распада. Изотопы. Искусственное превращение атомных ядер. Протонно-нейтронная модель атомного ядра. Ядерные силы. Энергия связи атомных ядер. Цепные ядерные реакции. Ядерный реактор. Биологическое действие радиоактивных излучений. Применение радиоактивных изотопов. Термоядерные реакции. Гермоядерный синтез.] Элементарные частицы. Фундаментальные взаимодействия.

«Элементы астрофизики» (0 ч.) Солнечная система. Солнце. Звезды. Наша Галактика.

[Другие галактики.] Простран-ственно-временны е масштабы наблюдаемой Вселенной. Представления об эволюции Вселенной. [Темная материя и темная энергия.

Тематическое планирование

В связи с тем, что реализуется отдельный предмет «Астрономия», часы раздела «Строение Вселенной» использованы для более детального изучения других разделов физики. За счет часов, отведенных на повторение материала раздела «Строение Вселенной» и резерва, были увеличены такие разделы как — «Механика» - 5 ч., «Молекулярная физика» - 3 ч., «Колебания и волны» - 8 ч., «Оптика» - 3 ч., и «Квантовая физика» - 1 ч. Наибольшее усиление получили разделы «Механика» (в нем изучаются наиболее общие законы и алгоритмы действий, применяющиеся в любом другом разделе) и «Колебания и волны» (тема «Колебания и волны» изучалась в 9 классе, для формирования единой картины мира и продолжения обучения физике требуется актуализация полученных ранее знаний). Раздел «Электродинамика» изучается в 10 классе и продолжается в 11-м, поэтому материал, изучаемый в 11 классе, начинается с часов повторения изученного в 10-м классе, на что определено 2 часа.